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AN EXTENSION OF THE PROJECTED GRADIENT METHOD TO A
BANACH SPACE SETTING WITH APPLICATION IN

STRUCTURAL TOPOLOGY OPTIMIZATION∗
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Abstract. For the minimization of a nonlinear cost functional under convex constraints the
relaxed projected gradient process is a well known method. The analysis is classically performed in a
Hilbert space. We generalize this method to functionals which are differentiable in a Banach space.
The search direction is calculated by a quadratic approximation of the cost functional using the idea
of the projected gradient. Thus it is possible to perform, e.g., an L2 gradient method if the cost
functional is only differentiable in L∞. We show global convergence using Armijo backtracking for
the step length selection and allow the underlying inner product and the scaling of the derivative to
change in every iteration. As an application we present a structural topology optimization problem
based on a phase field model, where the reduced cost functional is differentiable in H1 ∩ L∞. The
presented numerical results using the H1 inner product and a pointwise chosen metric including
second order information show the expected mesh independency in the iteration numbers. The
latter yields an additional, drastic decrease in iteration numbers as well as in computation time.
Moreover we present numerical results using a BFGS update of the H1 inner product for further
optimization problems based on phase field models.
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1. Introduction. For an optimization problem with nonlinear cost functional
and convex constraints

min j(ϕ) subject to ϕ ∈ Φad(1.1)

the projected gradient method is well known. The analysis of the finite dimensional
case can be found, for example, in [3]. Otherwise a Hilbert space setting is required,
i.e., the problem is posed in some Hilbert space H with inner product (., .)H and
norm ‖.‖H . The nonempty, convex feasible set Φad has to be closed with respect
to ‖.‖H and the cost functional j has to be Fréchet differentiable with respect to
this norm. Here we recall that the H-gradient ∇Hj is characterized by the equality
(∇Hj(ϕ), η)H = 〈j′(ϕ), η〉H∗,H for all η ∈ H , where j′ denotes the Fréchet derivative
of j. The classical projected gradient method then moves a current iterate in the
direction of the negative gradient and orthogonally projects the result back on the
feasible set:

ϕk+1 = PH(ϕk − λk∇Hj(ϕk)).(1.2)

Here, PH denotes the orthogonal projection onto Φad. Both the gradient and the
projection have to be taken with respect to the underlying Hilbert space inner product.
To obtain global convergence the step length λk in the direction of the negative
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gradient has to be chosen according to some step length rule. This method is often
called the gradient path method and is widely used. Details of the method and its
analysis and applications can be found, e.g., in [13, 14, 19, 20, 21, 23, 24, 25, 26, 31].
In [27] this method is extended to convex subsets of a reflexive, smooth, and rotund
Banach space employing the metric projection and the exact step length.

Approach (1.2) requires solving a projection subproblem in each line search iter-
ation. If the feasible set is given by box constraints and the L2 inner product is used,
the projection is in general cheap. However, if calculating the projection is expensive
compared to the evaluation of the cost functional each iteration is expensive. Hence,
another approach is possibly cheaper, where the projection and the step length calcula-
tion is interchanged. Then one performs a line search along the descent direction given
by the projected, possibly scaled negative gradient vk = PH(ϕk − λk∇Hj(ϕk))− ϕk,
i.e.,

ϕk+1 = ϕk + αk(PH(ϕk − λk∇Hj(ϕk))− ϕk),(1.3)

where the line search is done with respect to α whereas λk is fixed. This is suggested
in finite dimension, e.g., in [3, 29] or in more general Hilbert spaces in [11, 12, 21].

We generalize the method (1.3) to functionals which are not differentiable in a
Hilbert space, but in a possibly nonreflexive Banach space, where consequently no gra-
dient and no orthogonal projection exist. As mentioned, in [27] PH(ϕ− λ∇Hj(ϕ)) is
extended to Banach spaces using the duality mapping J to define∇j(ϕ) = J−1(j′(ϕ)),
where J is invertible since the considered Banach spaces are reflexive, smooth, and
strictly convex. However, our result allows to perform, e.g., an L2 gradient method if
the cost functional is only differentiable in L∞, which is often the case for semilinear
optimal control problems [31]. Note that L∞ does not fulfill the assumptions on the
space demanded in [27]. Moreover, in contrast to [27] we utilize a variable metric.
This extends the ideas given in finite dimension by [3] regarding the scaled gradient
projection methods and the constrained Newton’s method. The employed inner prod-
uct, which is used to determine the search direction, may change in each iteration.
Hence it is possible to include second order information in the method, which typically
leads to a decrease in the number of iterations. For Newton and quasi-Newton based
search directions even a superlinear rate of convergence is expected as it is known
under certain conditions [3, 12, 21, 24]. However, for these methods only local con-
vergence results are available, while the focus in this paper is on global convergence.
The resulting generalization we call the “variable metric projection type” (VMPT)
method.

The paper is organized as follows: In section 2 we study the VMPT method. In
section 2.1 a precise description of the method is given, where the search direction is
calculated by a quadratic approximation of the cost functional using the idea of the
projected gradient with varying inner products, and Armijo backtracking is applied
to determine the step length αk. In section 2.2 the global convergence result together
with the necessary assumptions, among others on the underlying Banach space, are
stated. In the last subsection we first prove that the search directions are well defined
and that they are descent directions as well as gradient related in the sense of Bert-
sekas [3]. (For a precise definition we refer to Lemma 2.10.) Then the proof of the
convergence result is given.

In section 3 we study the applicability of the method to a structural topology
optimization problem, namely, the mean compliance minimization in linear elasticity
based on a phase field model. The reduced cost functional is differentiable only in
H1 ∩ L∞.



EXTENSION OF THE PROJECTED GRADIENT METHOD 1483

In the last section numerical results are given. For the appropriately discretized
mean compliance problem we see as expected that the VMPT method choosing the
H1 metric leads to mesh independent iteration numbers in contrast to choosing the L2

metric. We also present the choice of a variable metric using second order information
and the choice of a BFGS update of theH1 metric. This reduces the iteration numbers
to less than a hundredth. Moreover, we give additional numerical examples for the
successful application of the VMPT method. These include a problem of compliant
mechanism, drag minimization of the Stokes flow, and an inverse problem.

2. Variable metric projection type method.

2.1. Generalization of the projected gradient method. The orthogonal
projection PH(ϕk − λk∇Hj(ϕk)) employed in (1.2) is the unique solution of

min
y∈Φad

1

2
‖(ϕk − λk∇Hj(ϕk))− y‖2H ,

which is equivalent to the problem

min
y∈Φad

1

2
‖y − ϕk‖2H + λkDj(ϕk, y − ϕk),(2.1)

in the sense that the minimizer is the same. This is due to the identity (∇Hj(ϕk), y−
ϕk)H = j′(ϕk)(y − ϕk) = Dj(ϕk, y − ϕk), where the last denotes the directional
derivative of j at ϕk in direction y − ϕk. In the formulation (2.1) the existence of
the gradient ∇Hj is not required. Even differentiability with respect to H can be
omitted.

In the following we formulate an extension of the projected gradient method where
PH(ϕk − λk∇Hj(ϕk)) is replaced by the solution ϕ̄k of (2.1).

First we drop the requirement of a gradient as mentioned above. We assume
that the admissible set Φad is a subset of an intersection of Banach spaces X ∩ D,
where X and D have certain properties (see (A1)), which are, e.g., fulfilled for X =
H1(Ω) or X = L2(Ω) and D = L∞(Ω). Furthermore assume that j is continuously
Fréchet differentiable on Φad with respect to the norm ‖.‖X∩D := ‖.‖X + ‖.‖D. The
Fréchet derivative of j at ϕ is denoted by j′(ϕ) ∈ (X∩D)∗, and we write 〈., .〉 for the
dual pairing in the space X ∩ D. Moreover, we use C as a positive generic constant
throughout the paper.

Second, we also allow the norm ‖.‖H in (2.1) to change in every iteration. There-
fore, we consider a sequence {ak} of symmetric positive definite bilinear forms inducing
norms ‖.‖ak

on X ∩ D . As already mentioned, this approach falls into the class of
variable metric methods and includes the choice of Newton and quasi-Newton based
search directions. In finite dimension ak is given by ak(p, v) := pTBkv, where Bk can
be the Hessian of j at ϕk, if it is positive definite, or an approximation of it.

Hence, in each step of the VMPT method the projection type subproblem

min
y∈Φad

1

2
‖y − ϕk‖2ak

+ λk 〈j′(ϕk), y − ϕk〉(2.2)

with some scaling parameter λk > 0 has to be solved. Problem (2.2) is formally
equivalent to the projection Pak

(ϕk − λk∇ak
j(ϕk)). However, j is not necessarily

differentiable with respect to ‖.‖ak
, and X ∩ D endowed with ak(., .) is only a pre-

Hilbert space. Hence ∇ak
j(ϕk) does not need to exist.

For globalization of the method we perform a line search based on the widely
used Armijo back tracking, which results in Algorithm 2.1. In the next section it is
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shown that the algorithm is well defined under certain assumptions and in particular
that a unique solution ϕ̄k of (2.2) exists, together with the proof of convergence. We
denote the solution of (2.2) also by Pk(ϕk) due to the connection to a projection.

Algorithm 2.1 (VMPT method).

1: Choose 0 < β < 1, 0 < σ < 1, and ϕ0 ∈ Φad.
2: k := 0
3: while k ≤ kmax do
4: Choose λk and ak.
5: Calculate the minimizer ϕk = Pk(ϕk) of the subproblem (2.2).
6: Set the search direction vk := ϕk − ϕk

7: if ‖vk‖X ≤ tol then
8: return
9: end if

10: Determine the step length αk := βmk with minimal mk ∈ N0 such that
j(ϕk + αkvk) ≤ j(ϕk) + αkσ 〈j′(ϕk), vk〉.

11: Update ϕk+1 := ϕk + αkvk
12: k := k + 1
13: end while

The stopping criterion ‖vk‖X ≤ tol is motivated by the fact that ϕk is a stationary
point of j if and only if vk = 0 and that vk → 0 in X; cf. Corollary 2.5 and Theorem 2.2.
By stationary point we throughout refer to stationarity with respect to Φad.

As already mentioned, this algorithm is not a curved search along the gradient
path (1.2). However, to include the idea of the gradient path approach, we imbed
the possibility to vary the scaling factor {λk} for the formal gradient in (2.2) in each
iteration. The parameter λk can be put into ak by dividing the cost functional in
(2.2) by λk. We nevertheless treat it as a separate parameter since this reflects the
case where ak is fixed for all iterations. Note that under the assumptions used in
this paper a curved search along the gradient path is not possible since not even the
existence of a positive step length can be guaranteed; cf. Remark 2.7.

2.2. Global convergence result. We perform the analysis of the method with
respect to two norms in the spaces X and D, which we assume to have the following
properties:

(A1) X is a reflexive real Banach space. D is isometrically isomorphic to B
∗, where

B is a separable real Banach space. Moreover, for any sequence {ϕi} in X∩D

with ϕi → ϕ weakly in X and ϕi → ϕ̃ weakly-* in D, it holds that ϕ = ϕ̃.
We identify D and B

∗ and say that a sequence converges weakly-* in D if it converges
weakly-* in B

∗. The separability of B is used to get weak-* sequential compactness
in D. We would like to mention that the results hold also if D is a reflexive Banach
space, in particular if D is an Hilbert space. In this case weak-* convergence has to
be replaced by weak convergence throughout the paper. However, in the application
we are interested in D = L∞(Ω). In the case of the Sobolev space X = W k,p(Ω) and
D = Lq(Ω), where Ω ⊆ R

d is a bounded domain, k ≥ 0, 1 < p < ∞, and 1 < q ≤ ∞,
the above assumption is fulfilled.

In addition to the above conditions on X and D let the following assumptions hold
for the problem (1.1):

(A2) Φad ⊆ X ∩ D is convex, closed in X, and nonempty.
(A3) Φad is bounded in D.
(A4) j is bounded from below on Φad.
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(A5) j is continuously differentiable in a neighborhood of Φad ⊆ X ∩ D.
(A6) For each ϕ ∈ Φad and for each sequence {ϕi} ⊆ X∩D with ϕi → 0 weakly in

X and weakly-* in D it holds that 〈j′(ϕ), ϕi〉 → 0 as i→ ∞.
Assumptions (A2)–(A5) are standard. Moreover, if there exists C > 0 such that
‖p‖D ≤ C‖p‖X holds for all p ∈ X ∩ D, assumption (A3) can be omitted as it is
the case in the classical Hilbert space setting (i.e., if D = X = H for some Hilbert
space H). The weak continuity assumption (A6) is fulfilled in many cases, e.g., if
X = D is a Hilbert space or if D = L∞ and j′(ϕ) ∈ L1 for all ϕ ∈ Φad as it is the
case for semilinear elliptic optimal control problems with box constraints under the
(common) assumptions listed in [31]. Another more general sufficient condition for
(A6) is j′(ϕ) ∈ X

∗ + B, where B is as in (A1). This is fulfilled, e.g., by the example
studied in section 3.

Moreover, we request for the parameters ak and λk of the algorithm that the
following hold:

(A7) {ak} is a sequence of symmetric positive definite bilinear forms on X ∩ D.
(A8) It exists c1 > 0 such that c1‖p‖2X ≤ ‖p‖2ak

for all p ∈ X ∩ D and k ∈ N0.
(A9) For all k ∈ N0 it exists c2(k) such that ‖p‖2ak

≤ c2‖p‖2X∩D
for all p ∈ X ∩D.

(A10) For all k ∈ N0, p ∈ Φad and for each sequence {yi} ⊆ Φad, where there exists
some y ∈ X ∩ D with yi → y weakly in X and weakly-* in D it holds that
ak(p, yi) → ak(p, y) as i→ ∞.

(A11) For each subsequence {ϕki} of the iterates given by Algorithm 2.1 converg-
ing in X ∩ D, the corresponding subsequence {aki} has the property that
aki(pi, yi) → 0 for any sequences {pi}, {yi} ⊆ X ∩ D with pi → 0 strongly in
X and weakly-* in D and {yi} converging in X ∩ D.

(A12) It holds that 0 < λmin ≤ λk ≤ λmax for all k ∈ N0.

(A1)–(A12) are assumed throughout this paper if not mentioned otherwise.
Assumption (A11) reflects the possibility of a point-based choice of ak, e.g., de-

pendent on the second order derivative j′′(ϕk) or on an approximation thereof.
We would like to mention that (A7)–(A9) are weaker assumptions than the typical

requirements for the method in Hilbert space (i.e., D = X = H), which is the uniform
norm equivalence (see [3, 14, 19, 29])

∃C, c > 0 : c‖p‖2H ≤ ‖p‖2ak
≤ C‖p‖2H ∀p ∈ H, k ∈ N0.(2.3)

Then also (A10)–(A11) are fulfilled. Also in the case that j ∈ C2(X ∩ D) and ak =
j′′(ϕk) fulfills (A8), the remaining assumptions of (A7)–(A11) hold. Furthermore, if
X is a Hilbert space (and D a Banach space as in (A1)), the choice ak(u, v) = (u, v)X
fulfills all assumptions (A7)–(A11).

An example of ak which only fulfills the weaker assumptions is presented in (3.9)
for our application in structural topology optimization.

The main result of the paper is the following, which is proved in section 2.3.

Theorem 2.2. Let {ϕk} ⊆ Φad be the sequence generated by the VMPT method
(Algorithm 2.1) with tol = 0 and let the assumptions (A1)–(A12) hold, then:

1. limk→∞ j(ϕk) exists.
2. Every accumulation point of {ϕk} in X ∩D is a stationary point of j.
3. For all subsequences with ϕki → ϕ in X ∩ D, where ϕ is stationary, the

subsequence {vki} converges strongly in X to zero.
4. If additionally j ∈ C1,γ(Φad) with respect to ‖.‖X∩D for some 0 < γ ≤ 1,

then the whole sequence {vk} converges to zero in X.
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The requirement of a strong accumulation point to obtain a stationary point is
common; see, e.g., [23, 32] and references therein. In case of convex cost functionals
this can be relaxed to weak accumulation points for the VMPT method [28]. This
theorem reflects the available results where the problem is posed in some Hilbert space
H and the constant metric ak(p, v) = (p, v)H is chosen: global convergence is shown
in [21] for convex j and a line search along the descent direction. In the case of a
curved search along the gradient path convergence is shown in [13, 16]. Result 4 of
Theorem 2.2 is shown in [23] in the case of a curved search along the gradient path
under the same assumption j ∈ C1,γ . Global convergence results for methods with
general variable metric are to our knowledge only available in finite dimensions, which
can be found, e.g., in [3].

2.3. Analysis and proof of the convergence result of the VMPT method.
We first show the existence and uniqueness of ϕk = Pk(ϕk) based on the direct method
in the calculus of variations using the following Lemma and assumptions (A2), (A3),
and (A5)–(A10). Note that the standard proof cannot be applied, since ak is indeed
X-coercive, but ak and 〈j′(ϕk), ·〉 are not X-continuous. Another difficulty is that
X ∩ D is not necessarily reflexive.

Lemma 2.3. Let {pk} ⊆ Φad with pk → p weakly in X for some p ∈ Φad. Then
pk → p weakly-* in D.

Proof. Since Φad is bounded in D and the closed unit ball of D is weakly-* se-
quentially compact due to the separability of B, we can extract from any subsequence
of {pk} ⊆ Φad another subsequence {pki} with pki → p̃ weakly-* in D for some p̃ ∈ D.
Due to the required unique limit in X and D we have p̃ = p. Since for any sub-
sequence we find a subsequence converging to the same p, we have that the whole
sequence converges to p.

Theorem 2.4. For any k ∈ N0 and ϕ ∈ Φad, the problem

min
y∈Φad

1

2
‖y − ϕ‖2ak

+ λk 〈j′(ϕ), y − ϕ〉(2.4)

admits a unique solution ϕ̄ := Pk(ϕ), which is given by the unique solution of the
variational inequality

ak(ϕ̄− ϕ, η − ϕ̄) + λk 〈j′(ϕ), η − ϕ̄〉 ≥ 0 ∀η ∈ Φad.(2.5)

Proof. Let k ∈ N0 and ϕ ∈ Φad arbitrary. Problem (2.4) is equivalent to

min
y∈Φad

gk(y) :=
1
2ak(y, y) + 〈bk, y〉 ,(2.6)

where 〈bk, y〉 := λk 〈j′(ϕ), y〉 − ak(ϕ, y) and bk ∈ (X ∩ D)∗ due to (A5) and (A9). By
(A3) and (A8) we get for any y ∈ Φad with some generic C > 0

gk(y) ≥ c1
2
‖y‖2

X
− ‖bk‖(X∩D)∗(‖y‖X + ‖y‖D︸ ︷︷ ︸

≤C

) ≥ −C.(2.7)

Thus gk is X-coercive and bounded from below on Φad. Hence we can choose an in-

fimizing sequence ϕi ∈ Φad, such that gk(ϕi)
i→∞−−−→ infy∈Φad

gk(y). From the estimate
(2.7) we conclude that {ϕi} is bounded in X. Therefore, we can extract a subsequence
(still denoted by ϕi) which converges weakly in X to some ϕ̄ ∈ X. Since Φad is convex
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and closed in X, it is also weakly closed in X and thus ϕ̄ ∈ Φad. By Lemma 2.3 we also
get ϕi → ϕ̄ weakly-* in D. Finally we show gk(ϕ̄) = infy∈Φad

gk(y). Using (A6), (A8),
and (A10) one can show that lim infi ak(ϕi, ϕi) ≥ ak(ϕ̄, ϕ̄) and limi 〈bk, ϕi〉 = 〈bk, ϕ̄〉,
and thus lim infi gk(ϕi) ≥ gk(ϕ̄). We conclude

inf
y∈Φad

gk(y) ≤ gk(ϕ̄) ≤ lim inf
i

gk(ϕi) = inf
y∈Φad

gk(y),

which shows the existence of a minimizer of (2.6). Using (A8), the uniqueness follows
from strict convexity of gk.

Due to (A5) and (A9), we have that gk is differentiable in X ∩ D, where its
directional derivative at ϕ̄ in direction η − ϕ̄ for arbitrary η ∈ Φad is given by

〈g′k(ϕ̄), η − ϕ̄〉 = ak(ϕ̄− ϕ, η − ϕ̄) + λk 〈j′(ϕ), η − ϕ̄〉 .
Since the problem (2.4) is convex, it is equivalent to the first order optimality condi-
tion, which is given by the variational inequality (2.5); see [15].

We see that ϕ ∈ Φad is a stationary point of j, that is, 〈j′(ϕ), η − ϕ〉 ≥ 0 for all
η ∈ Φad, if and only if ϕ = ϕ is the solution of (2.5), i.e., the fixed point equation
ϕ = Pk(ϕ) is fulfilled. This leads to the classical view of the method as a fixed point
iteration ϕk+1 = Pk(ϕk) in the case that Pk is independent of k and αk = 1 is chosen.

Corollary 2.5. If there exists some k ∈ N0 with Pk(ϕ) = ϕ, then ϕ is a sta-
tionary point of j with respect to Φad. On the other hand, if ϕ ∈ Φad is a stationary
point of (1.1), then the fixed point equation Pk(ϕ) = ϕ holds for all k ∈ N0. In
particular, an iterate ϕk of the algorithm is a stationary point of j if and only if
vk = Pk(ϕk)− ϕk = 0.

The variational inequality (2.5) tested with η = ϕ ∈ Φad together with (A8) and
(A12) yields that Pk(ϕ) − ϕ is a descent direction for j.

Lemma 2.6. Let k ∈ N0, ϕ ∈ Φad and v := Pk(ϕ)− ϕ. Then it holds that

〈j′(ϕ), v〉 ≤ − c1
λmax

‖v‖2
X
.(2.8)

Note that (2.8) does not hold in the X ∩ D-norm.
Due to 〈j′(ϕ), v〉 < 0 for v �= 0 the step length selection by the Armijo rule (see

step 10 in Algorithm 2.1) is well defined, which can be shown as in [3].

Remark 2.7. For the existence of a step length and for the global convergence
proof we exploit that the path α �→ ϕk + αvk is continuous in X ∩ D. Thus, the
mapping α �→ j(ϕk + αvk) is also continuous. On the other hand, this does not hold
for the gradient path. Backtracking along the gradient path or projection arc means
that αk is set to 1, whereas λk = βmk is chosen with mk ∈ N0 minimal such that the
Armijo condition

j(ϕk(λk)) ≤ j(ϕk) + σ 〈j′(ϕk), ϕk(λk)− ϕk〉
is satisfied; see, for instance, [25]. By the notation ϕk(λk) we emphasize that the
solution of the subproblem (2.2) depends on λk. However, with the above assumptions
it cannot be shown by the standard techniques used in the literature that there exists
such a λk. The reason is that due to (A8) the gradient path λ �→ ϕk(λ) is continuous
with respect to the X-norm, whereas j is due to (A5) only differentiable with respect
to the X∩D-norm. Thus, j along the gradient path, i.e., the mapping λ �→ j(ϕk(λ)),
may be discontinuous.
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To prove statement 2 of Theorem 2.2 we use, as in [3] for finite dimensions, that
vk is gradient related (see Lemma 2.10). This is weaker than the common angle
condition. Therefore we need the following two lemmata.

Lemma 2.8. For {ϕk} ⊆ Φad with ϕk → ϕ in X∩D and {pk} ⊆ X∩D with pk → p
weakly in X and weakly-* in D for some ϕ, p ∈ X ∩ D it holds that 〈j′(ϕk), pk〉 →
〈j′(ϕ), p〉.

Proof. We use (A5) and (A6) and obtain

| 〈j′(ϕk), pk〉 − 〈j′(ϕ), p〉 | ≤ | 〈j′(ϕk)− j′(ϕ), pk〉 |+ | 〈j′(ϕ), pk − p〉 |
≤ ‖j′(ϕk)− j′(ϕ)‖(X∩D)∗︸ ︷︷ ︸

→0

‖pk‖X∩D︸ ︷︷ ︸
≤C

+ | 〈j′(ϕ), pk − p〉 |︸ ︷︷ ︸
→0

→ 0.

The preceding lemma is also needed in the proof of Theorem 2.2.

Lemma 2.9. Let for a sequence {ϕi} ⊆ Φad hold ϕi → ϕ in X ∩ D for some
ϕ ∈ X ∩ D. Then there exists C > 0 such that ‖Pk(ϕi)‖X∩D ≤ C for all i, k ∈ N0.

Proof. Lemma 2.6 yields together with (A3) and (A5) the estimate

c1
λmax

‖Pk(ϕi)− ϕi‖2X ≤ −〈j′(ϕi),Pk(ϕi)− ϕi〉
≤ ‖j′(ϕi)‖(X∩D)∗(‖Pk(ϕi)− ϕi‖X + ‖Pk(ϕi)− ϕi‖D)
≤ C(‖Pk(ϕi)− ϕi‖X + 1),

thus ‖Pk(ϕi) − ϕi‖X ≤ C, and hence ‖Pk(ϕi)‖X ≤ C. Due to (A3) we finally get
‖Pk(ϕi)‖X∩D ≤ C independent of i and k.

Lemma 2.10. Let {ϕk} be the sequence generated by Algorithm 2.1, and then {vk}
is gradient related, i.e., for any subsequence {ϕki} which converges in X ∩ D to a
nonstationary point ϕ ∈ Φad of j, the corresponding subsequence of search directions
{vki} is bounded in X ∩ D and lim supi 〈j′(ϕki), vki〉 < 0 is satisfied. Moreover, it
holds that lim infi ‖vki‖X > 0.

Proof. Let ϕki → ϕ in X ∩ D, where ϕ is nonstationary. Lemma 2.9 provides
that {vki} is bounded in X ∩ D. With (2.8), the statement lim supi 〈j′(ϕki), vki〉 < 0
follows from lim infi ‖vki‖X = C > 0, which we show by contradiction.

Assume lim inf i ‖vki‖X = 0; thus there is a subsequence again denoted by {vki}
such that vki → 0 in X. Using (2.5) for ϕ̄k := Pk(ϕk), the positive definiteness of ak,
and (A12), it follows for all η ∈ Φad

〈j′(ϕk), η − ϕ̄k〉 ≥ 1

λk
(ak(vk, vk) + ak(vk, ϕ̄k − vk − η))

≥ − 1

λmin
|ak(vk, ϕ̄k − vk − η)| .(2.9)

Moreover, ϕ̄ki = vki +ϕki → ϕ in X and also weakly-* in D according to Lemma 2.3.
From Lemma 2.8 we get 〈j′(ϕki ), η − ϕ̄ki 〉 → 〈j′(ϕ), η − ϕ〉. From (A11) we get
aki(ϕ̄ki − ϕki , ϕki − η) → 0 and derive from (2.9) that

〈j′(ϕ), η − ϕ〉 ≥ 0 ∀η ∈ Φad,

which shows that ϕ is stationary, which is a contradiction.
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Proof of Theorem 2.2. Because of Corollary 2.5 we can assume vk �= 0 and thus
αk > 0 for all k.

1. From the Armijo rule and since vk is a descent direction we get

j(ϕk+1)− j(ϕk) ≤ αkσ 〈j′(ϕk), vk〉 < 0,(2.10)

and thus j(ϕk) is monotonically decreasing. Since j is bounded from below
we get convergence j(ϕk) → j∗ for some j∗ ∈ R, which proves 1.

2. The proof is similar to [3] in finite dimension by contradiction. Let ϕ be an ac-
cumulation point, with a convergent subsequence ϕki → ϕ in X∩D. The conti-
nuity of j on Φad then yields j∗ = j(ϕ) and (2.10) leads to αk 〈j′(ϕk), vk〉 → 0.
Assuming now that ϕ is nonstationary we have |〈j′(ϕki), vki〉| ≥ C > 0, since
{vk} is gradient related by Lemma 2.10, and thus αki → 0. So there ex-
ists some ī ∈ N such that αki/β ≤ 1 for all i ≥ ī, and thus αki/β does
not fulfill the Armijo rule due to the minimality of mk. Applying the mean
value theorem to the left-hand side of the Armijo condition, we have for some
nonnegative α̃ki ≤ αki

β and all i ≥ ī that

αki

β
〈j′ (ϕki + α̃kivki) , vki〉 = j

(
ϕki +

αki

β
vki

)
− j(ϕki ) >

αki

β
σ 〈j′(ϕki ), vki〉

(2.11)

holds. Since, by Lemma 2.10, {vki} is bounded in X ∩ D and α̃ki → 0, we
have that ϕki + α̃kivki → ϕ in X ∩ D. Also ϕ̄ki = ϕki + vki is uniformly
bounded in X ∩ D, and thus there exists a subsequence, again denoted by
{ϕ̄ki}, which converges to some y ∈ Φad weakly in X and weakly-* in D.
Hence we have that vki = ϕ̄ki − ϕki → v̄ := y − ϕ weakly in X and weakly-*
in D. According to Lemma 2.8 we can take the limit of both sides of the
inequality (2.11), which leads to 〈j′ (ϕ) , v̄〉 ≥ σ 〈j′ (ϕ) , v̄〉 , and σ < 1 yields
〈j′ (ϕ) , v̄〉 ≥ 0. This contradicts 〈j′ (ϕ) , v̄〉 = lim supi 〈j′(ϕki), vki〉 < 0, which
is a consequence of Lemma 2.10.

3. By proving that out of any subsequence of 〈j′(ϕki ), vki〉 we can extract an-
other subsequence, which converges to 0, we can conclude that 〈j′(ϕki), vki〉 →
0 which yields ‖vki‖X → 0 by (2.8). With Lemma 2.9, we get by the same
arguments as in 2 that vki → y − ϕ weakly in X and weakly-* in D for a
subsequence and for some y ∈ Φad, and thus 〈j′(ϕki ), vki〉 → 〈j′(ϕ), y − ϕ〉
due to Lemma 2.8. Since vki are descent directions for j at ϕki and ϕ is
stationary we have 〈j′(ϕ), y − ϕ〉 = 0.

4. As in 3 we prove by a subsequence argument that 〈j′(ϕk), vk〉 → 0. For
an arbitrary subsequence, which we also denote by index k, (2.10) yields
αk 〈j′(ϕk), vk〉 → 0. If αk ≥ c > 0 for all k, the assertion follows immediately.
Otherwise there exists a subsequence (again denoted by index k) such that
β ≥ αk → 0 and thus the step length αk/β does not fulfill the Armijo
condition. Since j′ is Hölder continuous with exponent γ and modulus L we
obtain

σ
αk

β
〈j′(ϕk), vk〉 < j

(
ϕk +

αk

β
vk

)
− j(ϕk) =

∫ 1

0

d

dt
j

(
ϕk + t

αk

β
vk

)
dt

≤ αk

β
〈j′(ϕk), vk〉+ L

1 + γ

(
αk

β

)1+γ

‖vk‖1+γ
X∩D

.
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It holds that ‖vk‖D ≤ C due to (A3), and employing (2.8) we obtain

0 < (σ − 1) 〈j′(ϕk), vk〉 < C
L

1 + γ

(
αk

β

)γ (
‖vk‖1+γ

X
+ 1

)

≤ Cαγ
k

(
| 〈j′(ϕk), vk〉 |

1+γ
2 + 1

)
.

We get xk := | 〈j′(ϕk), vk〉 | → 0. Otherwise there exists a subsequence still
denoted by {xk} with xk → c̄ > 0. Rearranging the last inequality gives

1 < Cαγ
k(x

−1+γ
2

k + x−1
k ) → 0, which is a contradiction.

Remark 2.11. Statements 1 and 2 of Theorem 2.2 require only that ϕk ∈ Φad

is chosen such that the search directions vk = ϕk − ϕk are gradient related descent
directions, as can be seen in the proof above. Hence, ϕk does not have to coincide
with Pk(ϕk) in Algorithm 2.1. In this case assumption (A3) is also not required.

3. An application in structural topology optimization based on a phase
field model. In this section we give an example of an optimization problem described
in [5], which is not differentiable in a Hilbert space, so the classical projected gradient
method cannot be applied, but the assumptions for the VMPT method are fulfilled.
We consider the problem of distributing N materials, each with different elastic prop-
erties and fixed volume fraction, within a design domain Ω ⊆ R

d, d ∈ N, such that the
mean compliance

∫
Γg

g · u is minimal under the external force g acting on Γg ⊆ ∂Ω.

The displacement field u : Ω → R
d is given as the solution of the equations of linear

elasticity (3.2). To obtain a well posed problem a perimeter penalization is typically
used. Using phase fields in topology optimization was introduced in [8]. Here, the N
materials are described by a vector valued phase field ϕ : Ω → R

N with ϕ ≥ 0 and∑
i ϕi = 1, which is able to handle topological changes implicitly. The ith material is

characterized by {ϕi = 1} and the different materials are separated by a thin inter-
face, whose thickness is controlled by the phase field parameter ε > 0. In the phase
field setting the perimeter is approximated by the Ginzburg–Landau energy

E(ϕ) :=

∫
Ω

{
ε

2
|∇ϕ|2 + 1

ε
ψ0(ϕ)

}
.

In [6] it is shown that the given problem for N = 2 converges as ε → 0 in the sense
of Γ-convergence. For further details about the model we refer the reader to [5]. The
resulting optimal control problem reads

min J̃(ϕ,u) :=

∫
Γg

g · u+ γE(ϕ),(3.1)

ϕ ∈ H1(Ω)N , u ∈ H1
D := {H1(Ω)d | ξ|ΓD = 0}

subject to

∫
Ω

C(ϕ)E(u) : E(ξ) =
∫
Γg

g · ξ ∀ξ ∈ H1
D(3.2)

⨏
Ω

ϕ = m, ϕ ≥ 0,

N∑
i=1

ϕi ≡ 1,(3.3)

where γ > 0 is a weighting factor, ⨏Ω ϕ := 1
|Ω|

∫
Ω
ϕ, ψ0 : RN → R is the smooth

part of the potential forcing the values of ϕ to the standard basis ei ∈ R
N , and
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A : B :=
∑d

i,j=1 AijBij for A,B ∈ R
d×d. The materials are fixed on the Dirichlet

domain ΓD ⊆ ∂Ω. The tensor valued mapping C : R
N → R

d×d ⊗ (Rd×d)∗ is a
suitable interpolation of the stiffness tensors C(ei) of the different materials, and
E(u) := 1

2 (∇u+∇uT ) is the linearized strain tensor. The prescribed volume fraction
of the ith material is given by mi. For examples of the functions ψ0 and C we refer to
[4, 5]. The existence of a minimizer of the problem (3.1)–(3.3) as well as the unique
solvability of the state equation (3.2) is shown in [5] under the following assumptions,
which we claim also in this paper.
(AP) Ω ⊆ R

d is a bounded Lipschitz domain; ΓD,Γg ⊆ ∂Ω with ΓD ∩ Γg = ∅ and
Hd−1(ΓD) > 0. Moreover, g ∈ L2(Γg)

d and ψ0 ∈ C1,1(RN ) as well as m ≥ 0,∑N
i=1 mi = 1. For the stiffness tensor we assume C = (Cijkl)

d
i,j,k,l=1 with

Cijkl ∈ C1,1(RN ) and Cijkl = Cjikl = Cklij and that there exist a0, a1, C > 0,
s.t. a0|A|2 ≤ C(ϕ)A : A ≤ a1|A|2 as well as |C ′(ϕ)| ≤ C holds for all
symmetric matrices A ∈ R

d×d and for all ϕ ∈ R
N .

The state u can be eliminated using the control-to-state operator S, resulting in
the reduced cost functional j̃(ϕ) := J̃(ϕ, S(ϕ)). In [5] it is also shown that j̃ :
H1(Ω)N ∩ L∞(Ω)N → R is everywhere Fréchet differentiable with derivative

j̃′(ϕ)v = γ

∫
Ω

{
ε∇ϕ : ∇v +

1

ε
ψ′
0(ϕ)v

}
−
∫
Ω

C ′(ϕ)vE(u) : E(u)(3.4)

for all ϕ,v ∈ H1(Ω)N ∩ L∞(Ω)N , where u = S(ϕ) and S : L∞(Ω)N → H1(Ω)d is
Fréchet differentiable. By the techniques in [5] one can also show that S′ is continuous.

In [5, 7] the problem is solved numerically by a pseudo time stepping method with
fixed time step, which results from an L2-gradient flow approach. An H−1 gradient
flow approach is also considered in [7]. The drawbacks of these methods are that no
convergence results to a stationary point exist, and hence also no appropriate stopping
criteria are known. In addition, typically the methods are very slow, i.e., many time
steps are needed until the changes in the solution ϕ or in j are small. Here we apply
the VMPT method, which does not have these drawbacks and which can additionally
incorporate second order information.

Since H1(Ω)N ∩ L∞(Ω)N is not a Hilbert space, the classical projected gradient
method cannot be applied. In the following we show that problem (3.1)–(3.3) fulfills
the assumptions on the VMPT method. Among others we use the inner product
ak(f , g) =

∫
Ω
∇f : ∇g. To guarantee positive definiteness of this ak we first have

to translate the problem by a constant to gain
∫
Ω
ϕ = 0, which allows us to apply

a Poincaré inequality. Therefore we perform a change of coordinates in the form
ϕ̃ = ϕ−m and get the following problem for the transformed coordinates:

min j(ϕ) :=

∫
Γg

g · S(ϕ+m) + γE(ϕ+m),(3.5)

ϕ ∈ Φad :=

⎧⎨
⎩ϕ ∈ H1(Ω)N

∣∣∣∣∣∣ ⨏
Ω

ϕ = 0, ϕ ≥ −m,

N∑
i=1

ϕi ≡ 0

⎫⎬
⎭ .

On the transformed problem (3.5) we apply the VMPT method in the spaces

X :=

⎧⎨
⎩ϕ ∈ H1(Ω)N

∣∣∣∣∣∣ ⨏
Ω

ϕ = 0

⎫⎬
⎭ , D := L∞(Ω)N .
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The space of mean value free functions X becomes a Hilbert space with the inner
product (f , g)X := (∇f ,∇g)L2 , and ‖.‖X is equivalent to the H1-norm [1].

Theorem 3.1. The reduced cost functional j : X∩D → R is continuously Fréchet
differentiable, and j′ is Lipschitz continuous on Φad.

Proof. The Fréchet differentiability of j on X∩D is shown in [5]. Let η,ϕi ∈ X∩D
and ui = S(ϕi), i = 1, 2. Then with (3.4), ψ0 ∈ C1,1(RN ), Cijkl ∈ C1,1(RN ), and
|C ′(ϕ)| ≤ C for all ϕ ∈ R

N we get

|(j′(ϕ1)− j′(ϕ2))η| ≤ γε‖ϕ1 −ϕ2‖H1‖η‖H1 + C
γ

ε
‖ϕ1 −ϕ2‖L2‖η‖L2

+

∣∣∣∣
∫
Ω

(C ′(m+ ϕ1)−C′(m+ϕ2))(η)E(u1) : E(u1)

∣∣∣∣
+

∣∣∣∣
∫
Ω

C′(m+ϕ2)(η)E(u1 − u2) : E(u1)

∣∣∣∣
+

∣∣∣∣
∫
Ω

C′(m+ϕ2)(η)E(u2) : E(u1 − u2)

∣∣∣∣
≤ C‖ϕ1 −ϕ2‖H1‖η‖H1

+ ‖(C′(m+ϕ1)−C′(m+ϕ2))η‖L∞‖u1‖2H1

+ C‖η‖L∞‖u1 − u2‖H1(‖u1‖H1 + ‖u2‖H1)

≤ C‖η‖H1∩L∞{‖ϕ1 −ϕ2‖H1 + ‖ϕ1 −ϕ2‖L∞‖u1‖2H1

+ ‖u1 − u2‖H1(‖u1‖H1 + ‖u2‖H1)}.(3.6)

To show the continuity of j′, let ϕn,ϕ ∈ X ∩ D for n ∈ N with ϕn → ϕ in X ∩ D.
Using (3.6) yields

‖j′(ϕn)− j′(ϕ)‖(H1∩L∞)∗

≤ C(‖ϕn −ϕ‖H1∩L∞(1 + ‖un‖2H1) + ‖un − u‖H1(‖un‖H1 + ‖u‖H1)),

where un = S(ϕn) and u = S(ϕ). From the continuity of S we get that ‖un‖H1 is
bounded and that ‖un − u‖H1 → 0 as n→ ∞. This implies

‖j′(ϕn)− j′(ϕ)‖(H1∩L∞)∗ → 0

and thus j ∈ C1(X ∩ D).
For the Lipschitz continuity of j′ we employ estimate (3.6) with ϕi ∈ Φad, i = 1, 2.

Since Φad is bounded in L∞, we get that S is Lipschitz continuous on Φad and that
‖S(ϕ)‖H1 ≤ C, independent of ϕ ∈ Φad; see [5]. This yields

‖j′(ϕ1)− j′(ϕ2)‖(H1∩L∞)∗ ≤ C‖ϕ1 −ϕ2‖H1∩L∞ ,

which proves the Lipschitz continuity of j′ in Φad.

Corollary 3.2. The spaces X and D together with j and Φad given in (3.5) fulfill
the assumptions (A1)–(A6) of the VMPT method.

Proof. Given the choices for X and D (A1) is fulfilled. For ϕ ∈ Φad we have

−1 ≤ −m ≤ ϕ ≤ 1−m ≤ 1 ∀ϕ ∈ Φad

almost everywhere in Ω. Thus (A3) holds and Φad ⊆ X ∩ D. Moreover, 0 ∈ Φad, Φad

is convex, and since Φad is closed in L2(Ω)N , it is also closed in X ↪→ L2(Ω)N . Thus
(A2) holds.
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Assumption (A4) is shown in [5], and Theorem 3.1 provides (A5).
Given

〈j′(ϕ),ϕi〉 =
∫
Ω

{
γε∇ϕ : ∇ϕi +

(γ
ε
∇ψ0(ϕ+m)−∇C(ϕ+m)E(u) : E(u)

)
· ϕi

}

the first term converges to 0 if ϕi → 0 weakly in H1. With (AP) and u ∈ H1
D we

have that γ
ε∇ψ0(ϕ + m) − ∇C(ϕ + m)E(u) : E(u) ∈ L1(Ω)N . Hence the remaining

term converges to 0 if ϕi → 0 weakly-* in L∞, which proves that (A6) is fulfilled.

Possible choices of the inner product ak for the VMPT method are the inner
product on X, i.e.,

ak(p,y) = (p,y)X =

∫
Ω

∇p : ∇y(3.7)

and the scaled version ak(p,y) = γε(p,y)X. Both fulfill the assumptions (A7)–(A11).
We also give an example of a pointwise choice of an inner product, which includes
second order information. Since this choice is not continuous in X, it is not obvious
that it fulfills the assumptions. To motivate the choice of this inner product we look
at the second order derivative of j, which is formally given by

j′′(ϕk)[p,y] =

∫
Ω

{
γε∇p : ∇y − 2(C ′(m+ϕk)(y)E(S′(ϕk)p) : E(uk))

+
γ

ε
∇2ψ0(m+ϕk)p · y −C′′(m+ϕk)[p,y]E(uk) : E(uk)

}
.

In [5] it is shown that zp := S′(ϕk)p ∈ H1
D is the unique weak solution of the linearized

state equation

∫
Ω

C(m+ϕk)E(zp) : E(η) = −
∫
Ω

C ′(m+ϕk)pE(uk) : E(η) ∀η ∈ H1
D(3.8)

and that ‖zp‖H1 ≤ Ck‖p‖L∞ holds. Since the first two terms in j′′ define an inner
product (see proof of Theorem 3.3), we use

ak(p,y) = γε(p,y)X − 2

∫
Ω

C′(m+ϕk)(y)E(zp) : E(uk)(3.9)

as an approximation of j′′(ϕk). Testing (3.8) for zy = S′(ϕk)y with zp we can
equivalently write

ak(p,y) = γε(p,y)X + 2

∫
Ω

C(m+ϕk)E(zp) : E(zy).(3.10)

We would like to mention that the C2-regularity of j is not necessary for this definition
of ak.

Theorem 3.3. The bilinear form ak given in (3.9) fulfills the assumptions (A7)–
(A11).

Proof. Due to (AP) and (3.10) we have

ak(p,p) ≥ γε‖p‖2
X
.
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Thus, (A7) and (A8) is fulfilled. Furthermore, (A9) holds due to

ak(p,y) ≤ γε‖p‖H1‖y‖H1 + C‖zp‖H1‖zy‖H1

≤ γε‖p‖H1‖y‖H1 + C‖p‖L∞‖y‖L∞ ≤ C‖p‖X∩D‖y‖X∩D.

(A10) is proved as in Corollary 3.2.
Finally we prove (A11). For yk → 0 and pk → p in X we have (yk,pk)X → 0

for k → ∞. With ϕk → ϕ, pk → p in D = L∞(Ω)N , and S : L∞(Ω)N → H1(Ω)N

continuously Fréchet differentiable, we have uk = S(ϕk) → S(ϕ) =: u in H1
D and

zpk
= S′(ϕk)pk → S′(ϕ)p =: zp in H1

D. In particular, the sequences are bounded in
the corresponding norms, including ‖yk‖L∞ ≤ C if yk → y weakly-* in L∞. Using the
Lipschitz continuity and boundedness of C ′ and ∇C(m + ϕ)E(zp) : E(u) ∈ L1(Ω)N

we have∣∣∣∣
∫
Ω

C ′(m+ϕk)ykE(zpk
) : E(uk)

∣∣∣∣
≤

∣∣∣∣
∫
Ω

(C ′(m+ ϕk)−C ′(m+ϕ))ykE(zpk
) : E(uk)

∣∣∣∣
+

∣∣∣∣
∫
Ω

C′(m+ϕ)ykE(zpk
− zp) : E(uk)

∣∣∣∣
+

∣∣∣∣
∫
Ω

C′(m+ϕ)ykE(zp) : E(uk − u)

∣∣∣∣+
∣∣∣∣
∫
Ω

C ′(m+ϕ)ykE(zp) : E(u)
∣∣∣∣

≤ L‖ϕk −ϕ‖L∞‖yk‖L∞‖zpk
‖H1‖uk‖H1

+ ‖C′(m+ϕ)‖L∞‖yk‖L∞‖zpk
− zp‖H1‖uk‖H1

+ ‖C′(m+ϕ)‖L∞‖yk‖L∞‖zp‖H1‖uk − u‖H1

+

∣∣∣∣
∫
Ω

(∇C(m+ϕ)E(zp) : E(u)) · yk

∣∣∣∣ → 0,

which gives (A11).

Hence with 0 < λmin ≤ λk ≤ λmax, all assumptions of Theorem 2.2 are fulfilled
and we get global convergence in the space H1(Ω)N ∩ L∞(Ω)N .

4. Numerical results. We discretize the structural topology optimization prob-
lem (3.1)–(3.3) using standard piecewise linear finite elements for the control ϕ and
the state variable u. The projection type subproblem (2.2) is solved by a primal dual
active set (PDAS) method similar to the method described in [2, 22]. Many numerical
examples for this problem can be found in [4, 6], e.g., for cantilever beams with up to
three materials in two or three space dimensions and for an optimal material distri-
bution within an airfoil. In [4] the choice of the potential ψ as an obstacle potential
and the choice of the tensor interpolation C is discussed. Also the inner products
(., .)X and γε(., .)X for fixed scaling parameter λk = 1 are compared, where both give
rise to a mesh independent method and the latter leads to a large speed up. Note
that the choice of (., .)X with λk = (γε)−1 leads to the same iterates as choosing
γε(., .)X and λk = 1. Furthermore, it is discussed in [4] that the choice of γε(., .)X
can be motivated using j′′(ϕ) or by the fact that for the minimizers {ϕε}ε>0 the
Ginzburg–Landau energy converges to the perimeter as ε→ 0 and hence γε‖ϕε‖2X ≈
const independent of ε � 1. However, since this holds only for the iterates ϕk when
the phases are separated and the interfaces are present with thickness proportional
to ε, we suggest adopting λk in accordance to this. As an updating strategy for λk
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Table 1

Comparison of iteration numbers for (., .)L2 and (., .)X.

h 2−4 2−5 2−6 2−7 2−8

(., .)L2 323 5015 18200 57630 172621
(., .)X 111 407 320 275 269

the following method is applied: Start with λ0 = 0.005(γε)−1, and then if αk−1 = 1,
set λ̃k = λk−1/0.75, else λ̃k = 0.75λk−1 and λk = max{10−10,min{1010, λ̃k}}. The
last adjustment yields that (A12) is fulfilled. This strategy is used for the following
numerical results. Numerical experiments in [4] show that this in fact produces for
the choice (., .)X a scaling with λk ≈ (γε)−1 for large k.

In [4, 6] the effect of obtaining various local minima of the nonconvex optimization
problem (3.1)–(3.3) by choosing different initial guesses ϕ0 can be seen. However, the
other parameters also have an influence.

In this paper we concentrate on comparing different choices of the inner products
ak and use for this the cantilever beam described in [4] with ψ0(ϕ) =

1
2 (1−ϕ·ϕ) and a

quadratic interpolation of the stiffness tensors C(ϕ). The computation are performed
on a personal computer with 3GHz and 4GB RAM. First we discuss the choice of
(., .)L2 versus (., .)X. The choice of the L2-inner product leads to the commonly used
projected L2-gradient method. However, (., .)L2 does not fulfill the assumptions of
the VMPT method, since j is not differentiable in L2(Ω)N or L2(Ω)N ∩ L∞(Ω)N .
Thus, global convergence is given for the discretized, finite dimensional problem but
not in the continuous setting. This leads in contrast to the choice of (., .)X to mesh
dependent iteration numbers for the L2-gradient method, which can be seen in Table 1.
The values in Table 1 were computed for different uniform mesh sizes h with the
parameters ε = 0.04, γ = 0.5, ϕ0 ≡ m = (0.5, 0.5)T , and tol = 10−5 for the stopping
criterion

√
γε‖∇ϕk‖L2 ≤ tol. The behavior of iteration numbers is in accordance

to our analytical results in function spaces considering h → 0. Furthermore, the
resulting values for λk not listed here show that we obtain for (., .)X and large k
scalings λk ≈ (γε)−1 independent of the mesh parameter h, whereas the L2-inner
product produces λk scaled with h2. Since the algorithm using the L2-inner product
is equivalent to the explicit time discretization of the L2-gradient flow, i.e., of the
Allen–Cahn variational inequality coupled with elasticity, with time step size Δt = λk,
the scaling λk = O(h2) reflects the known stability condition Δt = O(h2) for explicit
time discretizations of parabolic equations.

Next we compare (., .)X with ak given in (3.9), which incorporates second order
information. As an experiment we again use the cantilever beam in [4], now with
γ = 0.002, tol = 10−4 and random initial guess ϕ0 together with an adaptive mesh,
which is fine on the interface. We use a nested approach in ε and h, where on the
finest level ε = 0.001, hmax = 2−6, and hmin = 2−11 holds. The computational costs
of one iteration with ak given in (3.9) is significantly higher, since the calculation
of Pk(ϕk) requires the solution of a quadratic optimization problem with ϕ ∈ Φad

and in addition with the linearized state equation (3.8) as constraints. However, in
each PDAS iteration solving the subproblem for fixed k, only the right-hand side of
(3.8) changes, namely, only p. We factorize the matrix in the discrete equation once
such that for each p only a cheap forward and backward substitution has to be done.
In Table 2 the corresponding iteration numbers, the total CPU time, the values of
the combined cost functional j(ϕ∗) as well as of its parts, i.e., the mean compliance,
and the Ginzburg–Landau energy are listed. One observes the drastic reduction in
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Table 2

Comparison of two different inner products.

inner product iterations CPU time j(ϕ∗)
∫
Γg

g · u∗ E(ϕ∗)

(., .)X 11189 42h 12min 15.07 15.03 20.79
ak in (3.9) 851 19h 14.99 14.93 30.12

(a) (., .)X. (b) ak given in (3.9).

Fig. 1. Local minima for the cantilever beam.

Table 3

Mesh independent iteration numbers for the H1-BFGS method.

h 2−5 2−6 2−7 2−8 2−9

H1-BFGS iterations 85 88 86 85 85

iteration numbers using second order information. Due to the mentioned higher costs
of calculating the search directions the total CPU time is only halved. Nevertheless,
this can be possibly improved using a more sophisticated solver for Pk(ϕk). It can
be also observed that the cost j(ϕ∗) and the probably more interesting value of the
mean compliance is lower. Hence, the different inner products result in different local
minima, which are shown in Figure 1. The inner product given in (3.9) yields a finer
structure. Also in other experiments we observed a local minima with lower cost value
for this choice of ak.

We also successfully applied an L-BFGS update in function spaces (see, e.g., [21]
for the unconstrained case in Hilbert space) of the metric ak, i.e., starting with
a0(u,v) = γε(u,v)X we use the update

ak+1(u,v) = ak(u,v)− ak(pk, u)ak(pk, v)

ak(pk, pk)
+

〈yk, u〉 , 〈yk, v〉
〈yk, pk〉

in the case that 〈yk,pk〉 > 0, where pk := ϕk+1 − ϕk and yk := j′(ϕk+1) − j′(ϕk),
which performs very well especially for small γ. Note that—as in the finite dimen-
sional case—assumption (A8) cannot be shown for this sequence of inner products,
but numerical experiments show that the discretized method is mesh independent, see
Table 3, where the maximal recursion depth is set to 10 and the same cantilever beam
example is used as for Table 1. A detailed comparison of the VMPT method with the
often used gradient flow based solver (the Allen–Cahn or Cahn–Hilliard approach),
which is also called the pseudo time stepping method (see, e.g., [10] for smooth po-
tentials i.e., without box constraints on ϕ), can be found in [28]. We refer also to [33],
where a pseudo time stepping scheme of Cahn–Hilliard type is applied. Their scheme
needs up to 370,000 iterations to converge. Numerical studies on the local convergent
methods, namely, the SQP-method and the semismooth Newton-approach, can be
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(a) Crunching mechanism. (b) Obstacle minimizing drag. (c) Identified coefficient.

Fig. 2. Successful applications of the VMPT method.

found in [28]. In all these cases the VMPT method is at least competitive regarding
numerical efficency, and in addition global convergence is shown.

Finally we present other successful applications of the VMPT method.
The compliant mechanism problem

min
1

2

∫
Ωobs

(1 − ϕN )|u− uΩ|2 + γE(ϕ),

where the elasticity equation (3.2) and the constraints (3.3) have to hold, is more
difficult. In our numerical analysis the solution process is more sensitive to the choice
of ak. Here the above H1-BFGS approach enables us to solve the problem in an
acceptable time. Until γε‖∇vk‖L2 ≤ tol = 10−4 the calculation of the material
distribution in Figure 2(a) took 22 hours. It aims to crunch a nut in the middle of
the left boundary when the force acts on the right-hand side from above and below
and the mechanism is supplied on the left boundary; see [30].

Moreover, we also successfully applied the VMPT method on the following drag
minimization problem of the Stokes flow using a phase field approach, which is ana-
lyzed in [17]:

min

∫
Ω

1

2
|∇u|2+1

2
αε(ϕ)|u|2 + γE(ϕ),∫

Ω

αε(ϕ)uv +

∫
Ω

∇u · ∇v = 0 ∀v ∈ H1
0,div(Ω)

u|∂Ω ≡ (1, 0)
T
, ⨏ ϕ = 0.75, −1 ≤ ϕ ≤ 1.

We applied a nested approach in h and ε as well as an adaptive grid. As inner products
we used the above H1-BFGS method and obtained the result in Figure 2(b) with 188
iterations to obtain tol = 10−3, which took 17 minutes.

A different type of optimization problem is the inverse problem for a discontinuous
diffusion coefficient, where the discontinuous coefficient a is smoothed by a phase field
approach and no mass conservation is used [9]:

min
1

2

∫
Ω

|u− uobs|2 + γE(ϕ)

s.t.

∫
Ω

a(ϕ)∇u · ∇ξ =
∫
Γ

gξ ∀ξ ∈ H1 and

∫
Ω

u =

∫
Ω

uobs, −1 ≤ ϕ ≤ 1.

We choose uobs as solution of the state equation for ϕ shown in the upper part of
Figure 2(c) with added noise of 5% and obtain the solution shown in the lower part
of Figure 2(c).
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The last three application examples are preliminary results and are under fur-
ther studies. To our knowledge the VMPT method outperforms the existing applied
optimization algorithms in these cases (see, e.g., [9, 18]).
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